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Radiation Pattern, Reactive Pov/er, 
and Resistive Aperture Antennas 

!. INTRODICTION 

The radiative and reactive properties of a planar radiating aperture are 

closely interrelated.   Once the radiation pattern (a complex vector function) is 

known in any arbitrary small angular region, the system of evanescent waves on 

the aperture plane   ..nd therefore the reactive power of the aperture, are,  in 

principle,  complately determined.   This property is an immediate consequence of 

the analytical nature of the pattern (pointed out by Rhodes  ), and has been ex- 
2 3 ploited by several authors to establish expressions for the reactive power ' 

4 
after Woodward's pioneering work. 

A number of different expressions for the reactive power have been estab- 

lished,  all of these having the common feature of consisting of an integral 

Received for publication 7 January 1975. 
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(extended to the "Invisible Space" of the wavenumber plane; that is, the region 

whose points represent evanescent waves) of a function strictly related to the 
1-3 analytic continuation of the radiation pattern. Among them a particularly 

simple expression fcr the reactive power consists of the difference of two positive 

integrals, each depending only upon the transverse electric (TE) and transverse 
5 magnetic (TM) parts of the field with respect to the normal to the aperture.     It 

was later recognized that the components of the radiation field polarized in the 

plane of incidence and orthogonal to it, give rise to the inductive and capacitive 

terms, respectively, in the expression of the reactive power.     Although this 

led to an insight into the close relationship clearly existing between aperture 

reactance and polarization of the radiation pattern, no systematic investigation 

of the question was attempted. 
The main purpose of this report is to establish certain structural properties of 

a peculiar class of Plane Wave Spectra (PWS) representing an aperture field (or, 

equivalently of radiation patterns) which make the aperture reactive power equal to 

zero. To achieve this objective the entire question of the representation of an aper- 

ture field through a PWS is retvamined from a novel viewpoint. The Fourier Trans- 

form (FT) of the transverse electro field on the aperture is considered as a two- 

dimensional vector field on the wavenumber plane,  represented through two scalar 

functions, which are its coordinates in a chosen vector basis (Section 3).    The 

choice of the latter has an important physical significance since it corresponds to 

the decomposition of the PWS into two components having differently polarized 

radiation patterns and different reactive properties.   In Section 4, it is shown 

that the conductance and the susceptance of an aperture can be expressed as in- 

tegrals (extended over the visible and invisible space) of two quadratic forms 

(whose explicit expressions depend upon the basis chosen to represent the PWS). 

The diagonal and off diagonal terms of each of the 2X2 characteristic matrices 

of the quadratic forms,  represent the self and cross contributions of the two / 

components of the PWS to the conductance or the susceptance.   By using this 

technique it is shown that, if the radiation pattern is decomposed into two 

components circularly polarized at infinity, cross terms only contribute to the 

aperture susceptance.   It is thus established that an aperture whose radiation 

pattern is circularly polarized necessarily has a reactive power equal to zero. 

A different and more general structural requirement for the PWS having 

zero reactive power is then introduced.   It consists essentially in requiring that 

5. Borgiotti, G. V. (1967) On the reactive energy of an aperture, IEEE Trans. 
on Antennas and Propagation, AP-15;565-569. 

6. Borgiotti, G. V. (1968) A novel expression for the mutual admittance of 
planar radiating elements,  IEEE Trans, on Antennas and Propagation, 
AP-16(No. 3):329-333. ~ " 
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the function representing the density of reactiv; power per unit of area of the 

wavenumber plane, be azimuthally periodic around the origin and take equal posi- 

tive and negative values.   This simple requirement leads to a field whose proper- 

ties are recognized to be those associated with rotationally symmetric self 

complementary structures, whose inherent broadband properties are discussed 

from the viewpoint of PWS theory. 

Throughout this report, the arguments o, the various functions will be 

deleted in most cases, and retained only when it is felt necessary for reasons of 

clarity.   Also, a "real type" scalar product is used; that is,  the operation of 

complex conjugation is always explicitly indicated. 

2.   BACKGROUND \ND NOTATIONS 

Let the aperture A be cut on a perfectly conducting ground plane.   The aper- 

tures we will consider are not necessarily "strictly limited" in extent, in order 

not to rule out from our considerations certain structures (like the infinite spiral 

for < xample), which are idealized and mathematically tractable models of real 

world (that is,  Unite) antennas.   We will require,  however, that the transverse 
electric field on the aperture be square integrable.   This excludes, fron?this 

treatment,  periodic structures like periodic arrays of apertures.   However, with 

minor conceptual and formal modifications (namely use of Fourier Series rather 

than integrals) the latter case could also be accommodated. 

Let z = 0 be the aperture plane, in the geometrical frame of reference x, y, 

z.   The origin is located at a point of the aperftre which will coincide with its 

center for those apertures having point symmetry.   The axis z points towards the 

half-space of radiation.   Denote a vector position on the aperture plane by: 

/\      A 
x = xx + yy . (1) 

To complete the geometrical description let r,   Q, <t> be a spherical system 

(associated in a standard way with the x, y,  z axes) with 0 and <j> unit vectors in 

0 and <j> directions.    Let a and ß be the cosines of the direction of observation 

with respect to the x, y axes.   Then: 

a   =   sine cos 0 (2) 

sin 9 sin4 • (3) 
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The tangential magnetic and electric field on x = 0 will be denoted by H.(x) and 

E.(x), the latter differing from zero only on points of the aperture A.   The FT of 

E.(x) is defined as follows: 

4«-Äff Et(x) e^H* d
2> (4) 

where 

u = ux + vy (5) 

is a position vector in the plane u, v of the wavenumbers in directions x and y. 
2 

The element of area on the aperture plane has been denoted by d x.    It is con- 

venient to introduce (besides the cartesian components u,  v) a polar reference 
system on the wavenumber plane with radius vector t: 

t |u|  =^u2 + v2 (6) 

and argument p: 

u cos/u = Y sin ß = y (7) 

A unit vector in the wavenumber plane pointing in the radial direction will be 

denoted by 

p (u) = t    u (8) 

and a unit vector in the circumferential direction by 

tf(u) = zxpin) . (9) 

If w is the propagation constant in z direction, then the propagation vector k 

is defined as 

k - u  + wz . (10) 

If k = 2f/A is the free space propagation constant, then w is related to u, v by the 

dispersion relationship. Thus 

«Ti       2       2 f k   - u    - v (11) 

 : , :— -•■ '■•- ■■• -•  >~^--^ 
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in the "Visible Space", that is, the set C of points in the wavenumber plane such 

that 

u   < k (12) 

In the "invisible Space",  that is,  the set C C of points for which 

ul > k (13) 

it is 

w -j I \k   - u    - v   ! (14) 

The choise of the sign in Eqs. (11) and (14) is obviously dictated by radiation con- 

dition's. 

The FT of the transverse magnetic field H (x) on the aperture plane will be 

denoted by £{(u). Because of Maxwell's equations, H.(x) is of course uniquely 

determined once E (x) is assigned. 

3.  PKs REPRESENTATIONS OF THE EM FIELD 

3.1   (ienoral Formulation 

It is of course well known that every electromagnetic field can be represented 

by two scalar functions in conjunction with suitable vector differential operators. 

It is also known that while the representation is not unique,  different representa- 

tions are related through linear transformations. 

This fundamental property of the EM field can be conveniently rephrased in 

terms of linear spaces.   In fact its geometrical interpretation in the framework 

of the present treatment,  consists simply of the obvious possibility of representing 

the two-dimensional vector function   cl(u) on the wavenumber plane in different 

coordinate systems (or, in linear spaces terminology,  vector bases).   Generally, 

£ (u) can be expressed as follows: 

£t(u) = CjUiJs^u) + CgUOs^u) (15) 

where the two scalars CjfuJc^Ui) (coordinates of £.(u) in the vector basis s,(u), 

s,(u) ) can be considr-ed as the components of a column vector c(u): 

i ■■" 



c(u) 

cl<H> 

c2(u) 

(16) 

In the following. It will prove convenient to express the radiation pattern cor- 

responding to the PWS Eq. (15) as the weighted sum of two partial patterns 
F

sl
,9,4>) and F^id, (i obtained by assuming in (15) c,(u) = 1, c„(u) = 0 and 

c^u) = 0, c2(u) = 1 respectively.   As discussed in Appendix A, the total pattern 
takes the form: 

F<0, </») = cL (kQ,  kß) Fsl(0. <*>) + c2 (ka, kß) Fg2(0, <t>) (17) 

Thus the scalars c, (u), c2(u) are related to the complex amplitudes of the 

partial patterns and the vectors s,(u), s,(u) to their polarization properties. 

We will proceed now to discuss a few examples of different PWS representa- 

tions (among the infinite number possible). 

3.2 TE and TV) Field Components 

Let the vector basis used for representing the field be: 

Sj(u) ^(u) s^u) = *(u) . (18) 

Thus: 

_£t(u)   =    CtoQ + £y<u)$<u) (19) 

which is, of course, in the general form of Eq. (15).   The representation (19) 

of _£t(u) in polar form corresponds to the decomposition of the total (that is, 

radiative plus evanescent) field into two noninteracting components; £ (u) being 

related to the transverse magnetic (TM) and ^(u) to the transverse electric (TE) 

parts of the field with respect to the direction orthogonal to the aperture plane, 
7 

respectively.   This property has been discussed briefly in.     The two partial 

patterns are 

Fp(9,4) = £ (20) 

Borgiotti, G. V. (1968) Model analysis of periodic phased arrays of 
apertures, Proc. IEEE.  56:1881-1892 (Appendix 1). 

10 
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FJf),<j>)   =   corf«( 
/\ 

(21) 

(a result published already in a different form, in6). Thus the radial component 

of £{(u) gives rise to a radiation field polarized in the plane of incidence and the 

circumferential component to a field polarized in direction orthogonal to it. For 

future reference, we explicitly write the total pattern which from (17) and (19) o 

(21) is: 

V(f),4>) =    C(ka, kß) ft + cos^c?^(k», kjj)<i>  . (22) 

There is one point to be noticed about the field representations (19),    Since 

the vector function £'   is continuous at u = 0,  the scalar functions fi   and fi — t _   cp C,j, 
must either necessarily have a discontinuity at that point or must be zero.    It is 

also easily seen tmt for the same reasons,  a field purely TE or TM with respect 

to z must necessari.y have zero radiation at broadside; that is,   the single scalar 

function representing it must have a zero for u - o. 

.').:(   Rectangular tkmipoiUMils 

For completeness here the represent: tion through rectangular components 
1   8 

is included,  since it has been widely used in previous related work: ' 

s  (u) = X s_2(u) = y ; (23) 

that is 

£t(u) = f?x(u)x"^   £.(u)y (24) 

In this case 

F . (ft, 6) - cos Ö ft - cos ft sm öd (25) 

F (ft, d) = sind ft * cos ft cos oo (26) 

We will not use this representation in the sequel. 

8.   Borgiotti,  G. V.  (1963) Fourier transforms method in aperture antennas 
problems, Alta Frequenza,  32(No.  1 l):808-81(i. 

11 
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3.1   Field Components Circularly Polarized at Infinity 

Let the PWS be represented as: 

£t(u) =  f?R(u) R (u ) + £L(u) L(u) (27) 

with 

R(u) = p + ] — * L(u) =p - 3—* (28) 

By applying Eq. (22) it is apparent that each single component field is circularly 

polarized at infinity,  in the clockwise and counterclockwise directions respectively , 

I.  COMPLEX POKER AND PATTERN POLARIZATION 

LI   Co; Juctance and Susreptance Matrices 

The complex po 'er associated with the aperture is obtained by applying 

Poynting's theorem f r sinusoidal fields to the region limited by the aperture 

plane and a hemisphe e of radius tending to infinity (in z > 0).   The active and 

reactive powers are tne real and imaginary parts of the integral: 

Pr+ jl -iff    EtWxHt*(x) \ ^2 )• zd x (29) 

where ri x indicates the element of area in the aperture plane and the star denotes 
~ 3 

complex conjugate.   By using Parseval's theorem,  Eq. (29) becomes 

,     r+oo      r+cc 

•+jpt =y /       /     it^It'w 
/  -oo      / -oo 

(u) • z d u (30) 

where d u is the elementary area on the wavenumber plane.   In Appendix B,  it 

is shown that the integrand of (30) through some manipulations can be put in the 

form: 

it^t*- = ^[^.U)-'2fe;'*)(-4J (31) 

0 being the intrinsic impedance < I the vacuum and the cross indicating the con- 

jugate transpose.    T.n (31) the argument of the functions have not been explicitly 

indicated.   From now on they will be dropped in most cases to simplify notations. 

Expression (31) can also be written concisely as 

12 
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£t«it*^-it-2fit (32) 

where Y is identified with the dyadic operator 

(33) 

where the convenient bracket notation has been used.  X*s tne second order unit 
dyad. 

The operator Y is symmetric but not Hermitian.   However, it can be de- 

composed into two Hermitian (in fact real symmetric)  parts G and B 

I = G + jB (34) 

where 

G = 2 (Y + Y+) (35) 

and 

i=7r<l-x+> (36) 

From the inspection of (33), by recalling (11) tc (14), it is apparent that the 

operators G and B (conventionally called "Conductance" and "Susceptance") are 

different from zero only in the visible and invisible space, respectively.   Thus 

the real and reactive powers are expressed through integrals of Hermitian quad- 

ratic forms: 

J   -oo  J  -oo 
(37) 

and 

J   -oo   J -oo 
(38) 

13 
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Tht quadratic forms in (37) and (38) can be represented through matrices 

whose explicit expression depend upon the vector basis used. 

Let  c*t(u) be represented in the s,,£2 ^as^s» through the column vector (16). 
Then 

l+
r glt=c+.  G(s)c (39) 

(s) where C;      is the matrix representation of the conductance in the chosen basis: 

,(s) 
it'£il 

2-2 -£sl 

Sa ' £li 

^*.4i2 

(40) 

and similarly 

£t+-l£t'£+-I   £ (41) 

(s) with B      denoting the matrix representation of B, 

The reason for the development of the above formalism stems from the 
(s) (s) physical significance of the various terms in the expressions of G      and B     . 

In fact,  a term 

<s_. •  Gs. > (i = 1.2) (42) 

<s . • JBs .> (i - 1,2) (43) 

represents the Active or reactive power due to the polarization components s^ 

when acting alone.   Instead the cross forms 
—i 

<li • Sik* (i r k= 1,2) (44) 

<s..2£k> (i f k = 1, 2) (45) 

14 
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represent the effect of the interaction of two different polarization components on 

the active and reactive powers.   The theory will not be applied to two PWS 

representation of particular importance. 

4.2 9 and <f> Partial Patteras 

Let the field be represented as in Section 3,2.   It is promptly recognized that 

p and * are eigenvectors of the conductance and susceptance operators. With such 

a basis, the matrices representing Eqs, (35) and (36) take the diagonal forms 

G(P'*)=A 
7} V w     w*/ 

krT(w fW*> 

(46) 

and 

D ' 2 

JL/JL_J_) 
r\ \w     w*/ 

kr, (w - w*) 

(47) 

Thus, from (37): 

±£ (: W   fi 
k c* £ w    p ■:) A (48) 

Kj     2r, 7,       // (  f   g* ** -JL   * 
c*     |w|   cf. |w|   "P    P 

du (49) 

The lack of off diagonal terms in (46 and (47) implies the cross terms of the type 

(44) and (45) are zero.   The TM (that is.   £ ) and the TE (that is,   £   ) 

components of the field give rise not only to orthogonal radiation patterns as 

expressed by (22) and (44) but also to orthogonal evanescent fields, with reactive 

power of capacitive and inductive types.   On the basis of the previous treatment, 

certain properties of the aperture field can be summarized by: 

15 
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Proposition I:   If in a certain arbitrary solid angle the radiation pattern is 

polarized in the planes of incidence (that is, F. = 0), then £    equals zero in the 

entire wavenumbcr plane and the aperture reactance is purely capacitivt, 

Similarly,  if in any angular region the radiation pattern is polarized in directions 

orthogonal to incidence plane, the aperture reactance is purely inductive.   In 

both the cases, the radiation pattern has a zero at broadside. 

4.3  Circularly Polarized Partial Patterns 

Suppose now that the field is represented through circularly polarized 

components at infinity as expressed by Eq. (27).   Then: 

G(R,L) 
rj \w     w*/ 

r) \w     w*/ 

(50) 

However, the vectors R and L do not diagonalize the susceptance operator.   In 

fact, in the representation of the susceptance only off diagonal terms of the type 

(45) are present: 

B (R, L) 

0 k_ w* - w 
ww* 

k w* - w 0 
jn ww* 

(51) 

Thus the radnted power is from (37) and (42): 

■*£ 
,2 w d u (52) 

that is, it is the s.un of the powers associated with left and right polarizations. 

The reactive power 1J from (36) and (45): 

V-Tjfjf    (V*L +  «R*L*)Wd2H (53) 

and is thus due to the interactions of the two systems of evanescent waves 

associated with the two circularly polarized components of the aperture field. 

16 

■«■i^«n   iJMa—Mt^ü^JMi^ mumtmmamMm^^^.^^,^^..—^..^,^,„_,..„.^||Tr„[|r|...     migMMI iMMM «a 



fmmmmmf^^rmmm » »»■■■»■   ■ HH^■» — IP   ■ i    * 

From (53) the property expressed by Proposition II follows:   If the radiation 

pattern is (exactly) circularly polarized in any angular region (and consequently 

in the entire hemisphere at infinity), then the reactive power is necessarily zero. 

The above sufficient condition for zero reactance is a very restrictive one 

(and, of course,  is by no means necessary).   The kind of structure that can sup- 

port a field perfectly circularly polarized at infinity, is a quesvion that will be 

postponed until the end of Section 7. 

.">. ■GLQBYL" RKSOWNCE AND RESISTIVE PAS 

The condition of zero reactive power, written here as follows: 

(54) 
/oo fin 

tdt /       d+,   ^t Jij£t - 0 

expresses in general only a "global'' resonance condition,  that is (as can be 

seen from Eq. (49)) the fact that the inductive and capacitive powers have the 

same magnitude and opposite sign.   The occurrence of such a circumstance can 
1   2 be expected to be strongly frequency dependent.   '      A more restrictive condi- 

tion of "local" character will now be introduced leading to the definition of a 

class of PWS with zero associated reactive power,  independent of frequency (in 

a sense later discussed). 

To simplify the developments in the sequel, the operator R (7) is introduced 

whose effect on a scalar function f(t,n) is that of rotating it by an angle 7 around 

the origin of the wavenumber plane: 

R<7>f(t,M) = f(t,M-7)  . (55) 

If R<7> is applied to a two-dimensional vector (likej?.),  it acts on each compo- 

nent in the way expressed by (55). 

We will now require the following equality to hold for every point of the in- 

visible space and for a certain fixed 7: 

<?* (t,M)-B£t(t,M) = -[ a(7>£tU.n)] +-JLLR<7)£t<t,n>]   • (56) 

The significance of (56) is the following:   For every evanescent component wave 
Q 

propagating into direction ^ (with phase velocity k/t ) and contributing a certair 

elementary amount to the reactive power, there exists mother evanescent wave, 
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propagating (with the same velocity) in the direction ^-7 and contributing an 

opposite elementary amount to the reactive power.   A PWS for which (56) holds 

will be called "resistive" since (54) is evidently satisfied by it. 

Since,  obviously,  it is identically 

£t
+ -s^tr S(2,r)£t|+'S =<2ff)-t (57) 

from (56) an'." (57),  it follows that 7 cannot be arbitrary but must be 

1 z 
X (58) 

with N a positive integer.    From (56) and (58) and P4) to (36) and the analiticity 

of the various functions involved, the other condition for £ follows: 

—t =— t «<w>4^M^ (59) 

Equations (56) and (59) imply that for resistive PWS, the density of active power 

on, the wavenumber plane is a periodic function of the azimuthal coordinate with 

periodicity '/N, as is also the power radiation pattern.    The density of reective 

power is instead a periodic function of periodicity 2"/N,  taking opposite values 

at points azimuthally distant by */N, 

6.  THE VMLYTKAL STRI (Tl RE OK RESJSTI\K PWS 

We rewrite Eq. (59) as follows (by using bracket notation, which helps the 

clarity of presentation): 

<ii/i£>   «i££/<fi£>> (60) 

If Q is a linear operator, then (60) is satisfied if 

it= £M it (61) 

X^ = (QV
1
 ££ (62) 
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Equations (61) and (62) are obtained by requiring the two scalar products on the 

right and left side of (60) to be equal.   The following matrix equation for Q 

follows: 

SI = Y"1 (§yl 
(63) 

For any choise of an orthogonal basis, Q^ is easily found to be of the form: 

0      +1 
Q = e>Tn 

±1 

(64) 

with T real.   In (64), either the upper or the lower signs should be taken together. 

By introducing (64) into (61), the following homogeneous eigenvalue equation is 

obtained: 

(65) 

[ •      'I*1 

e+e-^ 
n =- 

.'S'N1    °   . 

(and, of course, the same equation would be obtained from (62)).   We may sum- 

marize the results obtained so far in Proposition HI:  A PWS is resistive (in the 

sense expressed bv (56)) if and only if the FT of the transverse electric field 

satisfies the eigenvalue equation (65). 

In polar coordinates, (65) is explicitly written: 

,-JT 
Sp 

= ± 

w 
k 0 0 -I*> So 

IAJ 0 _k_ 
w _ U«5» 0 /•] 

(66) 

equivalent to the pair of relationships: 

•*«, ■*?&<** (67) 

* w —  N  *"p (68) 
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By combining (67) and (68),  it follows that £ and e"-1 T are an eigenfunction and 

an eigenvalue of the equation: 

-*-JV0 = a2<H (69) 

and an identical equation is obtained for c    .   Since 

I2N(s}= l(2ff) = E (70) 

.2 ,T. with ^ the identity operator, the eigenvalues of R   (-^) satisfy the equation: 

-J2TskN (-e        a)=l, (s - 0,1 ... N-l) (71) 

that is, they consist of the set: 

J c 
.2£S 

s       "J N = e (s - 0, 1 ... N-l) (72) 

The eigenfunctions of (69) are promptly found to have the general form: 

AS)(t,,)=     g    a3+qN(t) e^+<^ .       (s =0,1... N-l) (73) 
q = -oo 

(s) Thus  £      is the product of a periodic function (of period 2«/N) l>y a linear phase 

term (of period 2f/s).   The circumferential component £. has of course the same 

type of angular dependence.    From (72), 

-.r. 4a 
s     ^ .      - N 

e = ±je (74) 

Each of the 2N values (74) corresponds to a different eigensolution of (66). Since 

the choices of the signs in (64) and (68) are independent,  the latter equation 

gives: 

tfW>»*j|     E     a.N(t)e^+^(-l)q.(s=0.1...N-l) (75) 
q = -oo 0 
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The radiation pattern from (22) is found to be 

+00 
F<M>   =     E     ag+aN(ksinö)eJ(9+c5N)^^±j(.l)^). 

q = -oo 
s+qN (76) 

Suppose now that every harmonic with s+qM i n is negligible in (76).   Some 

remarks on such an hypothesis for practical structure will be made in Section 7. 

Then: 

F(M) = an(ksin0)eJ1""(0± j*) Jntf (77) 

a circularly polarized pattern.   It could be shown that if the radiation pattern 

does not have a zero at broadside and n = +1, then the upper sign in (77) must be 

chosen (vice versa if n = -1). 

If the order N of rotational symmetry goes to infinity, (65) becomes: 

e~3T£ 

+ 1 

±1 

(78) 

yielding the following relationship (for any s) 

e* =±JH (79) 

corresponding to a circularly polarized pattern. 

7.  SELF-COMPLEMENTARY STRUCT!RES 

In this section certain features of self-complementary antennas (for example, 

the various types of spiral structures) will be expressed in terms of the resistive 

PWS concept developed in the previous sections.   In fact it will be recognized 

that the electromagnetic fields of this type of antenna can be represented through 

this peculiar type of PWS. 

We notice first that Eq. (65) by using the FT of Maxwell's equations can be 

transformed into: 

£t = ±R(J)n/.teJT 
(80) 
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as shown in Appendix C.   At this point, a property of bidimensional FT is re- 

called.   If a function is rotated around the origin of the plane of its variables by a 

cert .in angle y, its FT experiences a rotation by the same angle around the origin 

of the plane of the conjugate variables.   This property can be established in a 

number of simple ways, one of them being that of resorting to Fourier Bessel 

expansions.   Thus (80) implies: 

Et(p,4) = ±eJTr7Ht(p,tf -~)   . (81) 

Consider a self-complementary structv e hiving a center of symmetry (coincident 

with its feed point).   Denote by N > 2 f ; number of "arms" of the antenna (equal 

to the order of the rotational symmetry).   Because of the symmetric structure of 

the system of Maxwell's equations and of the complementary nature of the boundary 

conditions, it is known that there exist solutions of the electromagnetic problem 

of the antenna of the following type:  The tangential electric and magnetic field 

distributions have the same functional form,   They are obtained one from the other 

through a rotation around the center of symmetry of the structure of an angle equal 

or multiple of one half the angular distance between two adjacent arms, and by a 

multiplication by a complex constant whose absolute value is equal to rj.   This 

means that (81) is a possible solution of the electromagnetic problem of the struc- 

ture,  corresponding therefore to a resistive PWS as defined by (56) or (59).   Thus 

(81) implies that the aperture reactance is necessarily zero. 

It is known from experiment that if the self-complementary structure is of a 

"spiral type",  the radiation pattern is almost p-'-fectly polarized no matter what 

type of spiral is involved (logarithmic, or other).   This result is apparently 

related either to the fast convergence of the series (75) for the radiation pattern 

or more generally to the predominance in (75) of terms with q even (or odd) with 

respect of terms with q odd (or even).   The fact that the structure is a spiral can 

be expressed in general by saying that in the polar equation of the edge of the arms, 

th«? radius vector must be a monotonic function of the angle.    How this circum- 

stance affects the convergence property of (75) is an open interesting question. 
From a qualitative standpoint, it can be generally asserted that for any rotation- 

ally symmetric structure, angular harmonics of the field distribution on the 

aperture contribute less and less to the PWS in the visible space with the increase 

of their order. This can be easily established by resorting to Fourier Bessel 

expansion of both the aperture field and the PWS.   On the basis of this reasoning 

it can be inferred that when N goes to infinity only one harmonic should pre- 

dominate in (73) and (75), and the field should be exactly circularly polarized for 

every direction of propagation.   This is in fact the case as shown by (78) and (79). 
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Finally notice that if (78) holds on a frequency band, then the PWS is resistive 

on the same frequency band.   Since (78) and thus (81) are essentially related to a 

physical and geometrical property of the aperture, the essential independence of 

the frequency of the "resistive" character of the PWS is inferred. 

8.  CONCLUDING REMARKS 

Two fundamental (strictly interrelated) problem areas concerning the theory 

of radiating apertures; have been investigated in this report by using the Fourier 

Transform (or,  in different terminology) the Plane Wave Spectrum Method. 

The first area of study refers to the relationship between the polarization of 

the radiation pattern and the aperture reactive power.   The main results estab- 

lished are summarized by Propositions I and II in Section 4.   In Proposition (I), 

it was asserted that the components of the radiation patterns polarized (for each 

direction of propagation) in the plane of incidence o»~ orthogonal to it give rise, 

so to speak, to the caj^citive and inductive terms of the reactive power, 

respectively.   In 1     - jsition (II), it was established that an aperture antenna 

radiating a purely v_-*-.ularly polarized field has reactive power necessarily 

equal to zero.   To obtain these results a somewhat novel formalism was intro- 

duced, which allows the determination of the effect on the reactive power of the 

two "Partial Patterns" in which the radiation pattern of the aperture can be de- 

composed in an arbitrary way. 

The attempt to generalize the result in Proposition (II) spurred an investiga- 

tion of the second problem area.   Determining analytic properties of PWS 

associated with broadband zero reactance radiating apertures.   It was argued that 

the general (resonance) condition (54) for zero reactive power is,  in general 

strongly dependent upon frequency.   This occurs for two basic reasons:   the varia- 

tion of E.(x) and therefore &(u), with frequency; and the change of k (proportional 

to frequencies),  that is, of it\e radius limit of visible spa:e.   Even if Et(x) does 

not vary with frequency (an hypothesis used by Collin, et al., to determine the 
2 frequency sensitivity of an aperture admittance ),  the change of the radius of the 

visible space will in general upset the balance (51) obtained at resonance.   This 

will not occur, however, if the vector function C. has certain azimuthal sym- 

metries making the integral for reactive power equal to zero independent of both 

the radius of the visible space (that is, of the frequency) and of the detailed nature 

of c. (provided the symmetry requirements are met).   In Proposition III, the 

analytical conditions were established which the FT of the electric aperture field 

must satisfy to realize a reactive power density (on the wavenumber plane) with 

the properties sought.   Such condition, as perhaps expected, determines the 
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azimuthal structure of the PWS only.    It does not, however,  constrain the 

functional radial dependence (upon the radius vector t) af the coefficients of the 

angular harmonics of the PWS,  which may in fact vary with frequency without 

affecting the "resistive" character of the PWS.   It was recognized that rotational- 

ly symmetric self-complementary .structure,  can support fields whose associated 

PWS is of the type discussed.   For them the condition on the transverse aperture 

field expressed by (81) is esientis'ly independent of frequency since its realiza- 

tion is related to the self-complementary character of the boundary conditions 

on the aperture and on the azimuthal number of .he excitation, but not on the 

details of the field distribution. 
A final remark is in order.   All the discussion has been conducted in terms 

of admittance properties of the aperture.   The antenna input terminal admittance 

properties depend,  however, also upon the nature of the feeding system and may 

possibly be substantially different.   This is true particularly for the broadband 

resistive properties oi self-   »mplementary antennas (always heavily affected 

by the presence of the cavity,  which makes the antenna radiate in a hemisphere 

onlv.) 
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Appendix A 

General Expression of Radiation Pcitern 

The field of an aperture whose transverse dielectric component is E, is 

given by the expression: 

Hvy.^-vxi-jfjf 
j   ff    Et(?,r,)exP(-jk \(x-Z)  t(y-nf^  ) 

V(x-02+(y-n)2+22 
dfdrj (Ai) 

1 as a consequence of one of the equivalence theorems and image principle.     By 

taking the FT of (Al) (a convolution integral) with respect to s, y and by 

recalling that the differential operator Vx is transformed into the algebraic 

operator -jkx (and v into k),  the following expression of the electric field- 

holding for every point of the hemisphere of radiation—is obtained: 

E(x. y, z) - ^ J ^ J ^ e •'_    •'     ^ - —jd u (A2) 

where use has been made of a well known integral representation of scalar free 

space Green's function.   After inserting into (A2) the general representation (15) 

1.   Borgiotti,  G. V.  (1963) Fourier transforms Method in aperture antennas 
problems, Alta Frequenza 32(No. D.-Ö08-81U. 
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for E., the radiation pattern can be obtained by asymptotically evaluating (A2) 
through a standard application of bidimensional stationary phase method, as 
discussed in some detail in.     The result is Eq. (17) where 

Fsl<0) = hi «Hs^H^+cosof^j^)*^^] $ (A3) 

(the lo" ar or upper subscripts referring tj the ilrst and the second partial 
pattern) whsre: 

ug 5 (ka, kß) (A4) 

is the stationary point. 
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Appendix B 

Derivation of the Quadratic Forms for the Complex Power 

Because of Maxwell s equation: 

H(x,y, z) = - jj^Vx E (x,y, z) (Bl) 

with E(x, y, z) given by (AD.    Taking the FT of (Bl) for z = 0: 

(u •   £fxz)k - k2(£.x£) 
£(u> =iLt<u> +^Mz(u) = S^f —' z-' knw (B2) 

Thus: 

~          k zxft   - (uzxfi )u 

^t   = k^ ~ (B3) 

and: 

2/y  #v+,^ 
^ k'(Zx£f(zx£.) - (zx£ • u)*(u • tx£ 

JLt-(zx £>= ■ few L-^-^—- lojw <B4) 
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Since 

(B5) 

Equation (31) immediately follows. 

p%, 
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Appendix C 

FT Maxwell's Equations in Planar Polar Coordinates 

The FT (with respect to x, y) of Maxwell's equations are 

f =4 Kx k (CD 

J[--^1XJL <C2> 

withi= £. + z c .    From (C2),  taking the radial component on wavenumber 

plane, 

1P°'W&**'-w**' (C3) 

From (C2) in a similar way, 

X»s«FrT*p    • <C4) 

Equations (C3) and (C4) express the relationships between the electric and mag- 

netic vectors for fields TE and TM with respect normal to the aperture, and 
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show that the two fields are uncoupled.     By considering the expression (33) 

for Y, (80) easily follows from (C3) and C4).   (However, Eq. (80) is of course 

a vector relationship independent of coordinate systems.) 

1.   Borgiotti, G. V. (1968) Modal analysis of periodic phased arrays of 
apertures, Proc. IEEE 56(No.  11):1881-1892 (Appendix I). 
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